Tumor necrosis factor alpha (TNF-α): Potential Effects and Natural Substances that May Suppress Production and Activity

image_pdfimage_print

Tumor necrosis factor alpha (TNF-α) is an intercellular signaling protein called a cytokine, which can be released by multiple types of immune cells in response to cellular damage, stress, or infection.

Excessive TNF-α, however, can lead to a chronic inflammatory state, which can lead to neurological disorders.  The key to maintaining a normal level of TNF-α and to not produce excessive amounts of TNF-α, is to suppress the production and activity of excessive TNF-α. 

Table: Effects of Tumor necrosis factor alpha (TNF-α)

TNF-α

 

 

Cause

Effect

Reference(s)

Chronic Inflammation

 

 

 

Excessive TNF-α can lead to a chronic inflammatory state, can increase thrombosis (blood clotting) and decrease cardiac contractility, and may be implicated in tumor initiation and promotion.

 [1]

Alzheimer’s Disease

 

 

 

Elevated levels of TNF and increased release of TNF in the brain may occur in Alzheimer’s disease patients.  This increased TNF activity may contribute to the death of neurons in the brain of Alzheimer’s disease patients.

 [2]

 

Oligodendroglia

 

 

 

Excessive TNF-a retards the maturation of oligodendroglia.

 [3]

 

Table: Nootropics/Nutraceuticals/Foods/Herbs/Spices that may Suppress the Production and Activity of Excessive TNF*

TNF-α

 

 

Category

Nootropics/Nutraceuticals/Foods/Herbs

Reference(s)

Amino Acids

 

 

 

N-Acetyl-Cysteine (NAC)

  [4]

Foods

 

 

 

Coconut Oil

  [5]

Herbs

 

 

 

Boswellia serrata

  [6]

 

Cat’s Claw

  [7]

 

Dandelion

  [8]

 

Ginger

  [9]

 

Ginko Biloba

  [10]

 

Green Tea

  [11]

 

Korean Ginseng

  [12]

 

Nettle

  [13]

 

Perilla Leaf

  [14]

 

Polypodium leucotomos

  [15]

Hormones

 

 

 

DHEA

  [16]

 

Melatonin

  [17]

Lipids

 

 

 

Dihomo-Gamma Linolenic Acid

  [18]

 

DHA

  [19]

Minerals

 

 

 

Magnesium

  [20]

 

Zinc

  [21]

Probiotics

 

 

 

Bifidobacteria bulgaricus

  [22]

 

Lactobacilicus casei

  [23]

 

Lactobacilis rhamnosus

  [24]

Polyphenols

 

 

 

Luteolin

  [25]

 

Quercetin

  [26]

 

Resveratrol

  [27]

Proteins

 

 

 

Lactoferrin

  [28]

Quinones

 

 

 

Coenzyme Q10

  [29]

Spin Traps

 

 

 

PBN

  [30]

Vitamins

 

 

 

Vitamin A

  [31]

 

Vitamin B12

  [32]

 

Vitamin E

  [33]

*Note: The contents of this document have not been evaluated by the Food and Drug Administration. Any substances referred to in this document are not intended to diagnose, treat, cure, or prevent any disease. Information and statements made are for education purposes and are not intended to replace the advice of your treating doctor. BioFoundations does not dispense medical advice, prescribe, or diagnose illness. If you have a severe medical condition or health concern, consult your physician.


Download PDF:  Tumor necrosis factor alpha (TNF-α): Potential Effects and Natural Substances that May Suppress Production and Activity

Note: PDF files require a viewer such as the free Adobe Reader


    Print This Post Print This Post


References:

[1] Kundu, J. K., and Surh, Y.-J. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659(1-2):15–30

[2] Das, U. N.  Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory.  Nutrition.  19:62-65, 2003.

Fillit, H., et al.  Elevated circulating tumor necrosis factor levels in Alzheimer’s disease.  Neurosci Lett.  129(2):318-320, 1991.

[3] Cammer, W.  Protection of cultured oligodendrocytes against tumor necrosis factor-alpha by the antioxidants coenzyme Q(10) and N-acetyl cysteine.  Brain Res Bull.  58(6):587-592, 2002.

[4] Cammer, W.  Protection of cultured oligodendrocytes against tumor necrosis factor-alpha by the antioxidants coenzyme Q(10) and N-acetyl cysteine.  Brain Res Bull.  58(6):587-592, 2002.

Yeh, S-S., et al.  Geriatric cachexia: the role of cytokines.  American Journal of Clinical Nutrition.  70(2):183-197, 1999.

[5] Sadeghi, S., et al.  Dietary lipids modify the cytokine response to bacterial lipopolysaccharide in mice.  Immunology.  96(3):404-410, 1999.

[6] Gayathri, B., Manjula, N., Vinaykumar, K. S., Lakshmi, B. S., and Balakrishnan, A. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFalpha, IL-1beta, NO and MAP kinases. International Immunopharmacology. 2007;7(4):473–482

Boswellia serrata. Altern Med Rev. 2008;13(2):165–167

[7] Allen-Hall, L., et al. Uncaria tomentosa acts as a potent TNF-alpha inhibitor through NF-kappaB.  Journal of Ethnopharmacology.  127(3):685-693, 2010.

Sandoval, M., et al.  Cat’s claw inhibits TNFalpha production and scavenges free radicals: role in cytoprotection.  Free Radical Biology & Medicine.  29(1):71-78, 2000.

Sandoval, M., et al.  Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content.  Phytomedicine.  9(4):325-337, 2002.

[8] Kim, H. M., et al.  Taraxacum officinale inhibits tumor necrosis factor-alpha production from rat astrocytes.  Immunopharmacol Immunotoxicol.  22(3):519-530, 2000.

[9] Milliman, W. B.  Hepatitis C:  A retrospective study, literature review, and naturopathic protocol.  Alternative Medicine Review.  5(4):355-370, 2000.

Surh, Y.  Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances.  Mutat Res.  428(1-2):305-327, 1999.

[10] Jiao, Y. B., et al.  Expression of pro-inflammatory and anti-inflammatory cytokines in brain of atherosclerotic rats and effects of Ginkgo biloba extract.  Acta Pharmacol Sin.  26(7):835-839, 2005.

[11] Fujiki, H., et al.  Mechanistic findings of green tea as cancer preventive for humans.  Proc Soc Exp Biol Med.  220(4):225-228, 1999.

Milliman, W. B.  Hepatitis C:  A retrospective study, literature review, and naturopathic protocol.  Alternative Medicine Review.  5(4):355-370, 2000.

[12] Kim, H. A., et al.  Anti-arthritic effect of ginsenoside Rb1 on collagen induced arthritis in mice.  Int Immunopharmacol.  7(10):1286-1291, 2007.

[13] Obertreis, B., et al.  Ex-vivo in-vitro inhibition of lipopolysaccharide stimulated tumor necrosis factor-alpha and interleukin-1 beta secretion in human whole blood by extractum urticae dioicae foliorum.  Arzneimittelforschung.  46(4):389-394, 1996.

Riehemann, K., et al.  Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-kb.  FEBS Lett.  442:89-94, 1999.

[14] Ueda, H., et al.  Inhibition of tumor necrosis factor-alpha production by orally administering a perilla leaf extract.  Biosci Biotechnol Biochem.  61(8):1292-1295, 1997.

[15] Gonzalez, S., et al.  An extract of the fern Polypodium leucotomos (Difur) modulates Th1/Th2 cytokines balance in vitro and appears to exhibit anti-angiogenic activities in vivo: pathogenic relationships and therapeutic implications.  Anticancer Research.  20(3A):1567-1575, 2000.

[16] Danenberg, H. D., et al.  Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production.  Antimicrob Agents Chemother.  36(10):2275-2279, 1992.

Di Santo, E., et al.  DHEAS inhibits TNF production in monocytes, astrocytes and microglial cells.  Neuroimmunomodulation.  3(5):285-288, 1996.

Kimura, M., et al.  Dehydroepiandrosterone decreases serum tumor necrosis factor-alpha and restores insulin sensitivity: independent effect from secondary weight reduction in genetically obese Zucker fatty rats.  Endocrinology.  139:3249-3253, 1998.

Kipper-Galperin, M., et al.  Dehydroepiandrosterone selectively inhibits production of tumor necrosis factor alpha and interleukin-6 [correction of interlukin-6] in astrocytes.  Int J Dev Neurosci.  17(8):765-775, 1999.

[17] Lissoni, P., et al.  Is there a role for melatonin in the treatment of neoplastic cachexia?  Eur J Cancer.  32A(8):1340-1343, 1996.

[18] Dooper, M. M., et al.  Dihomo-gamma-linolenic acid inhibits tumour necrosis factor-alpha production by human leucocytes independently of cyclooxygenase activity.  Immunology.  110(3):348-357, 2003.

[19] Trebble, T., et al.  Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation.  British Journal of Nutrition.  90(2):405-412, 2003.

[20] Chacko, S., Song, Y., Nathan, L., and Tinker, L. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes. 2010

[21] Bao, B., et al.  Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects:  a potential implication of zinc as an atheroprotective agent.  Am J Clin Nutr.  2010.

Baum, M. K., et al.  Zinc status in human immunodeficiency virus infection.  Journal of Nutrition.  130(5):1421S-1423S, 2000.

Prasad, A. S., et al.  Antioxidant effect of zinc in humans.  Free Radic Biol Med.  37(8):1182-1190, 2004.

[22] Borruel, N., et al.  Increased mucosal tumour necrosis factor alpha production in Crohn’s disease can be downregulated ex vivo by probiotic bacteria.  Gut.  51(5):659-664, 2002.

[23] Borruel, N., et al.  Increased mucosal tumour necrosis factor alpha production in Crohn’s disease can be downregulated ex vivo by probiotic bacteria.  Gut.  51(5):659-664, 2002.

[24] Kekkonen, R. A., et al.  Probiotic intervention has strain-specific anti-inflammatory effects in healthy adults.  World J Gastroenterol.  14(13):2029-206, 2008.

[25] Kotanidou, A., et al.  Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice.  Am J Respir Crit Care Med.  165(6):818-823, 2002.

[26] Jung, W. J., et al.  Effects of major dietary antioxidants on inflammatory markers of RAW 264.7 macrophages.  Biofactors.  21(1-4):113-117, 2004.

Wang, J., et al.  Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages.  J Agric Food Chem.  50(15):4183-4189, 2002.

[27] Khanduja, K. L., Bhardwaj, A., and Kaushik, G. Resveratrol inhibits N-nitrosodiethylamine-induced ornithine decarboxylase and cyclooxygenase in mice. J. Nutr. Sci. Vitaminol. 2004;50(1):61–65

[28] Zimecki, M., et al.  Lactoferrin increases the output of neutrophil precursors and attenuates the spontaneous production of TNF-alpha and IL-6 by peripheral blood cells.  Arch Immunol Ther Exp.  47(2):113-118, 1999.

[29] ·          Bessler, H., et al.  Coenzyme Q10 decreases TNF-alpha and IL-2 secretion by human peripheral blood mononuclear cells.  J Nutr Sci Vitaminol (Tokyo).  56(1):77-81, 2010.

Cammer, W.  Protection of cultured oligodendrocytes against tumor necrosis factor-alpha by the antioxidants coenzyme Q(10) and N-acetyl cysteine.  Brain Res Bull.  58(6):587-592, 2002.

[30] Pogrebniak, H. W., et  al.  Spin trap salvage from endotoxemia: the role of cytokine down-regulation.  Surgery.  112(2):130-139, 1992.

[31] Experimental Biology 2001 Conference.  Orlando, Florida, USA.  April 2001.

[32] Peracchi, M., et al.  Human cobalamin deficiency: alterations in serum tumour necrosis factor-alpha and epidermal growth factor.  Eur J Haematol.  67:123-127, 2001.

[33] Jialal, I., et al.  The effect of alpha-tocopherol on monocyte proatherogenic activity.  Journal of Nutrition.  131(2 Supplement):389S-394S, 2001.

Jiang, Q., et al.  Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats.  FASEB J.  17(8):816-822, 2003.

Yam, M. L., et al.  Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages.  Lipids.  2009.