Toxin trapping with Chlorophyllin

image_pdfimage_print

The unique chemical structures of chlorophyllin and chlorophyll enable them to bind and “trap” toxins in the gut preventing their absorption. In animal models, chlorophyllin and chlorophyll lower the bioavailability and accelerate the excretion of several environmental carcinogens.

Toxin trapping may partly explain the results of a human trial of residents of Qidong, China, an area with a high incidence of liver cancer due to exposure to aflatoxin (a toxin produced by species of the fungus Aspergius). Among the 180 people who took 100 mg of chlorophyllin three times daily, urinary levels of DNA-aflatoxin conjugates (a marker for DNA mutation) went down 55% compared to untreated people.

It is thus strongly suggested to consume 100mg of Chlorophyllin with each main meal of the day.


References:

Morita K, Matsueda T, Iida T, Hasegawa T. Chlorella accelerates dioxin excretion in rats. J Nutr 1999;129:1731 – 6

Natsume Y, Satsu H, Kitamura K, Okamoto N, Shimizu M. Assessment system for dioxin absorption in the small intestine and prevention of its absorption by food factors. Biofactors 2004; 21(1-4):375 – 7

Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJM, Sips AJAM. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 2005;43:31 – 40

Egner PA, Wang JB, Zhu YR, Zhang BC, Wu Y, Zhang QN, et al. Chlorophyllin intervention reduces aflatoxin-DNA adducts in individuals at high risk for liver cancer. Proc Natl Acad Sci 2001;98(25): 14601 – 6


    Print This Post Print This Post