Natural Substances that May Potentially Detoxify Certain Environmental Toxins

image_pdfimage_print

Environmental toxins or toxicants are universal and are virtually impossible to avoid anywhere in the world.  There are, of course, more pristine areas of the world than others, but in this day and age your exposure to environmental toxins, to a certain extent, are inevitable.

Having a good understanding of the most prevalent and health damaging environmental toxins is important to maintaining overall health and avoiding possible disease pathologies, especially cancer and neurological disorders. 

There are a number of online resources that can educate you on these environmental toxins.  Four important resources are listed below:

Toxicology and Environmental Health Information Program (TEHIP)

The National Library of Medicine (NLM) Toxicology and Environmental Health Information Program (TEHIP) evolved from the Toxicology Information Program (TIP) that was established in 1967 at the (NLM) in response to recommendations made in the 1966 report “Handling of Toxicological Information,” prepared by the President’s Science Advisory Committee.

TEHIP maintains a comprehensive web site that provides access to resources produced by it and by other government agencies and organizations. This web site includes links to databases, bibliographies, tutorials, and other scientific and consumer-oriented resources. TEHIP also is responsible for the Toxicology Data Network (TOXNET®), an integrated system of toxicology and environmental health databases that are available free of charge on the web.

The Agency for Toxic Substances and Disease Registry (ATSDR)

The Agency for Toxic Substances and Disease Registry (ATSDR), based in Atlanta, Georgia, is a federal public health agency of the U.S. Department of Health and Human Services. ATSDR serves the public by using the best science, taking responsive public health actions, and providing trusted health information to prevent harmful exposures and diseases related to toxic substances.

U.S. Environmental Protection Agency’s Toxics Release Inventory (TRI) Program

TRI is a resource for learning about toxic chemical releases and pollution prevention activities reported by industrial and federal facilities. TRI data support informed decision-making by communities, government agencies, companies, and others.

The Environmental Working Group

The Environmental Working Group’s mission is to empower people to live healthier lives in a healthier environment. With breakthrough research and education, we drive consumer choice and civic action. We are a non-profit, non-partisan organization dedicated to protecting human health and the environment. 


Despite the fact that there have been hundreds of environmental toxins identified and categorized, this article will only focus on eleven (11) common environmental toxins and examine their various sources and possible disease pathologies that may develop as a result of exposure.  These eleven environmental toxins include:

  • Aluminum
  • Asbestos
  • Benzo[a]pyrene (Polycyclic aromatic hydrocarbon)
  • Bisphenol A (BPA)
  • Chloroform
  • Cyanide
  • Dioxins
  • Formaldehyde
  • Heterocyclic amines
  • Perchlorate
  • Polycyclic aromatic hydrocarbons

The Table below lists the eleven environmental toxins and their sources and possible disease states based on ongoing exposure:

List of Certain Environmental Toxins

ToxinSourcesPotential Diseases
AluminumAluminum is used for beverage cans, pots and pans, airplanes, siding and roofing, and foil. Aluminum is often mixed with small amounts of other metals to form aluminum alloys, which are stronger and harder. Aluminum compounds have many different uses, for example, as alums in water-treatment and alumina in abrasives and furnace linings. They are also found in consumer products such as antacids, astringents, buffered aspirin, food additives, and antiperspirants.Musculoskeletal (Muscles and Skeleton), Neurological (Nervous System), Respiratory (From the Nose to the Lungs)
AsbestosInsulation on floors, ceilings, water pipes and heating ducts from the 1950s to 1970sAsbestos is linked to increased risk of lung cancer, and development of mesothelioma (cancer of the thin lining surrounding the lung (pleural membrane) or abdominal cavity (the peritoneum)) and laryngeal cancer. Cancer may appear 30 to 50 years after exposure.
Bisphenol A (BPA)It is used in making all kinds of plastics and resins, including water bottles and food containers. It is used in hard plastics, food cans, drink cans, receipts, and dental sealants.BPA is an endocrine disruptor linked to breast and prostate cancer.
ChloroformAir, drinking water and food can contain chloroform. Other names for chloroform are trichloromethane and methyl trichloride.Cardiovascular (Heart and Blood Vessels), Developmental (effects during periods when organs are developing) , Hepatic (Liver), Neurological (Nervous System), Renal (Urinary System or Kidneys), Reproductive (Producing Children)
DioxinsDioxins are a group of chemicals formed as unintentional byproducts of industrial processes involving chlorine, such as waste incineration, chemical manufacturing, and pulp and paper bleaching. Dioxins include polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and the polychlorinated biphenyls (PCBs). Exposure is through the ingestion of contaminated foods and, to a lesser extent, dermal contact. Farm-raised salmon. Most farm-raised salmon, which accounts for most of the supply in the United States, are fed meals of ground-up fish that have absorbed PCBs in the environment. Polychlorinated biphenyls (PCBs) are commonly found in foods of animal origin (meat, dairy, and fish, depending on the country of origin)cancer classification depends on the dioxin: 2,3,7,8-TCDD (Agent Orange) is a known human carcinogen; some other dioxins are probable or possible human carcinogens.
FormaldehydeFormaldehyde can be found in a variety of building and home decoration products (as urea-formaldehyde resins and phenol-formaldehyde resin). It is also used as a preservative and disinfectant.Exposure is through inhalation and dermal contact. Automobile exhaust is the greatest contributor to formaldehyde concentrations in ambient air. Construction materials, furnishings, and cigarettes account for most formaldehyde in indoor air.Formaldehyde has caused nasal cancer in rats after long term exposure; it is linked to leukemia and nasopharygeal cancer in humans. It is a known human carcinogen.
Heterocyclic aminesChemicals that form when meat is cooked at high temperatures (e.g., grilled or broiled)Some heterocyclic amines (HCAs) found in cooked and especially burned meat are known carcinogens. Harmane, a β-carboline alkaloid found in meats, has been shown to have strong neurotoxic characteristics, and in particular, is "highly tremorogenic" (tremor inducing).
PerchlorateThe dominant use of perchlorates are for propellants in rockets. Of specific value is Ammonium perchlorate composite propellant as a component of solid rocket fuel. Low levels of perchlorate have been detected in both drinking water and groundwater in 26 states in the U.S., according to the Environmental Protection Agency.Perchlorate is a potent competitive inhibitor of the thyroid sodium-iodide symporter. Some studies suggest that perchlorate has pulmonary toxic effects as well.
Polycyclic aromatic hydrocarbonsThey are products of fossil fuel combustion, particularly petrochemicals, and are a major source of cancer-causing chemicals in polluted air. Polycyclic aromatic hydrocarbons (PAHs) form as a result of incomplete combustion of organic compounds: combustion from wood and fuel in residential heating, coal burners, automobiles, diesel-fueled engines, refuse fires, and grilled meats. They are found in coal tar and coal tar pitch, used for roofing and surface coatings. Exposure to these lipophilic substances results from inhalation of polluted air, wood smoke, and tobacco smoke, and ingestion of contaminated food and water. PAHs are reasonably anticipated to be a human carcinogen. PAHs have been linked to skin, lung, bladder, liver, and stomach cancers in well-established animal model studies. 1

In addition to the conscious avoidance and non-exposure to these eleven environmental toxins, (e.g., non-exposure to polycyclic aromatic hydrocarbons can be avoiding or minimized by not consuming grilled, barbequed or fried meats), there are a number of natural substances that have been researched for their ability to counteract the environmental toxin and/or assist the body in detoxifying the toxin from the body by stimulating the Phase I or II metabolic detoxification system.

The Table below lists those natural substances that may potentially assist in the detoxification of the eleven environmental toxins:

Natural Substance that Detoxify Certain Environmental Substances

ToxinPotential Substances that DetoxifyReference
Aluminum
N-acetylcysteine (NAC)1
Ethylene-Diamine-Tetra-Acetate (EDTA)2
Melatonin3
Selenium4
Silicon5
Malic acid6
Citric acid7
Folic acid (folate)8
Vitamin C9
Vitamin E10
Ginko Biloba11
Propolis12  13
Magnesium14
Centrophenoxine15  16  17
Bacopa monniera18
Cnidium monnieri19
Asbestos
Green Tea20
Garlic21
Benzo[a]pyrene (Polycyclic aromatic hydrocarbon)
Calcium D-Glucaric Acid22
Quercetin23
Vitamin C24
Vitamin E25
Blueberries, raspberries, strawberries26
Bisphenol A (BPA)
Sage (Salvia)27
ChloroformN-acetylcysteine (NAC)28
Dioxins
Chitosan31
Curcumin32
Resveratrol33
Chlorophyllin34
Vitamin A35
Vitamin E36
Chlorella38 39  
Green Tea40
Korean Ginseng41
Wakame seaweed42
Formaldehyde
Melatonin43
Vitamin C44
Vitamin E45
Heterocyclic amines
Indole-3-Carbinol46
Caffeic Acid47
Curcumin48
Epigallo-Catechin-Gallate (EGCG)49
Luteolin50
Quercetin51
Chlorophyllin52 53  
Natto54
Rosemary55
Broccoli56
Brussels Sprouts57
Perchlorate
Iodine58
Polycyclic aromatic hydrocarbons
Lycopene59
Resveratrol60
Chlorophyllin61
Green Tea62
Vitamin C63
Vitamin E64


    Print This Post Print This Post