Berberine exerts a hypoglycemic effect

image_pdfimage_print

Berberine is a type of Isoquinoline Alkaloid.

It is found in such plants as Berberis [e.g. Berberis aquifolium (Oregon grape), Berberis vulgaris (barberry), Berberis aristata (tree turmeric)], Hydrastis canadensis (goldenseal), Xanthorhiza simplicissima (yellowroot), Phellodendron amurense (Amur cork tree), Coptis chinensis (Chinese goldthread), Tinospora cordifolia, Argemone mexicana (prickly poppy), and Eschscholzia californica (Californian poppy).

Berberine exerts a hypoglycemic effect, but the mechanism remains unknown. In a study at the Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China, the effect of berberine on glucose uptake was characterized in 3T3-L1 adipocytes. It was revealed that berberine stimulated glucose uptake in 3T3-L1 adipocytes in a dose- and time-dependent manner with the maximal effect at 12 hours. Glucose uptake was increased by berberine in 3T3-L1 preadipocytes as well. Berberine-stimulated glucose uptake was additive to that of insulin in 3T3-L1 adipocytes, even at the maximal effective concentrations of both components.

Unlike insulin, the effect of berberine on glucose uptake was insensitive to wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and SB203580, an inhibitor of p38 mitogen-activated protein kinase. Berberine activated extracellular signal-regulated kinase (ERK) 1/2, but PD98059, an ERK kinase inhibitor, only decreased berberine-stimulated glucose uptake by 32%. Berberine did not induce Ser473 phosphorylation of Akt nor enhance insulin-induced phosphorylation of Akt.

Meanwhile, the expression and cellular localization of glucose transporter 4 (GLUT4) were not altered by berberine. Berberine did not increase GLUT1 gene expression. However, genistein, a tyrosine kinase inhibitor, completely blocked berberine-stimulated glucose uptake in 3T3-L1 adipocytes and preadipocytes, suggesting that berberine may induce glucose transport via increasing GLUT1 activity.

In addition, berberine increased adenosine monophosphate-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation. These findings suggest that berberine increases glucose uptake through a mechanism distinct from insulin, and activated adenosine monophosphate-activated protein kinase seems to be involved in the metabolic effect of berberine. [1]


References:

[1] Zhou, L., et al. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism. 56(3):405-412, 2007.

Zhang Y, Li X, Zou D et al. (July 2008). “Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine”. The Journal of Clinical Endocrinology and Metabolism 93 (7): 2559–65.

Yin J, Xing H, Ye J (May 2008). “Efficacy of berberine in patients with type 2 diabetes mellitus”. Metabolism: Clinical and Experimental 57 (5): 712–7.

Wu LY, Ma ZM, Fan XL et al. (November 2009). “The anti-necrosis role of hypoxic preconditioning after acute anoxia is mediated by aldose reductase and sorbitol pathway in PC12 cells”. Cell Stress & Chaperones 15 (4): 387–94.

Yin J, Gao Z, Liu D, Liu Z, Ye J (January 2008). “Berberine improves glucose metabolism through induction of glycolysis”. American Journal of Physiology. Endocrinology and Metabolism 294 (1): E148–56.

Kong WJ, Zhang H, Song DQ et al. (January 2009). “Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression”. Metabolism 58 (1): 109–19. 


Informational References:

Clinical Applications for Berberine

The Berberine Story Gets Better and Better (Life Enhancement July 2013)

Take This Dye for Diabetes From the ancient Silk Road to the modern nutritional pharmacopeia (By Will Block, Life Enhancement November 2010)


Resources:

Dr. Whittaker – Berberine (500mg)


    Print This Post Print This Post